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Abstract—There exists between the solutions of the diffusion equation and the solutions of the wave

equation a relationship which enables new solutions of the diffusion equation to be obtained. Focus and

splash mode solutions are discussed which are connected to the recently discovered mode solutions of the
wave equation.

1. INTRODUCTION

THE DIFFUSION equation has been the subject of many
works in different areas: heat conduction [1, 2}, neu-
tron scattering {3], wave mechanics [4] ... But a
relationship between the solutions of the diffusion
equation and the solutions of the wave equation
passed largely unnoticed. This relationship is dis-
cussed here and it is proved that it leads to new solu-
tions in unbounded media.

Using the heat equation as representative of the
diffusion processes and to simplify the matter assume
the diffusivity as unity so that the heat equation takes
the form

A‘f’z_azﬁ&z =0 (1)

where A is the Laplacian operator and , the derivative
with respect to time.
With the velocity of light unity, the wave equation
is
AY, =0k, =0. )]

Then taking the Laplace transform of equations
(1) and (2) with respect to time and using the well-
known relation [5] between the inverse transforms
LY f(p) and L7(f(/p)) where p is the sym-
bolic variable one obtains the following relation
between ¥, and ¥,

Valryaz,0) = ﬁr ey (o2 ds (3)

provided that 04, =0 at +=0 (in ref. [5], it is
required wrongly that i, be also zero at ¢ = 0).
For instance with

where a is an arbitrary scalar, r, ¢ the transverse coor-
dinates, and 7, denotes one of the usual Bessel func-
tions of order .

From now on relation (3) is used first to discuss the
general plane, spherical, and cylindrical solutions of
the heat equation in unbounded media and second to
introduce new kinds of solutions.

2. GENERAL SYMMETRIC SOLUTIONS

2.1. Plane solutions
The general plane wave solution of the one-dimen-
sional wave equation is

¥i(z 1) = 3(Fz—-0D+Gz+1) ©®

where F, G are arbitrary smooth functions while the
factor 1/2 has been introduced for convenience. The
condition 3, = 0 at ¢t = 0 requires F= G. Then
substituting

¥i(z,8) = 3(F(z—5) + F(z +5)) 6"
into equation (3) gives the general plane solution of
the one-dimensional diffusion equation in the form of
a Wiener integral

1
2/(r)

For instance, if F{z—s) is the nth derivative 6"(z—s)
of the Dirac distribution, one obtains the instan-
taneous multiplet source solutions [1] of equation (1)

LU ()
lp2,n(z7 t) - 2\/(1”) (55‘"6 s (8)

while F(z—5) = e™“~9 leads to equation (5a).
Relation (7) is usually obtained in a different way

Yoz, 1) = Jw e Fiz—s)ds.  (7)

z,1) = cosate” ¥ 4a ) X
¥i (0 ) “a) by using the Fourier transform and the convolution
Y. (r,0,1) = e ™ cosarz,(ar) (4b)  product [6]. In this case F(z) is the initial distribution
one obtains the elementary solutions of temperature along 0z.
Ualz, 1) = e e~ (53) 2.2. Spherical solutions
, . First note that in spherical geometry the diffusion
Yar, ¢, 1) =e ™ e ¢ (ar) {5b) equation takes the form
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d 2 2 3 a
q7E RY2)=2(Ry2) =0, R*=x4p"+2° (9

comparing equation (9) with the one-dimensional
diffasion equation 83 ,—3,¥, = 0 shows that one
has just to substitute R and Ry, to z and ¥, in equa-
tion (7} to obtain the spherical solutions of equation
{1). This gives

i = 2 ds
HR ) = e e (R85 (10
vl Mm)fl (R—) 7. (10)
For F{R~s) = §"(R—s), one obtains the instan-
tanecus multiplet source solutions
v",,4z> (1 D
Bew R

( — l )il l (’/!II
Rp)=-" | "
t//i’,m( ) 2 /I(TU) R Osn €
which reduce for # = 1 to the well-known result

ar
corresponding to a point source.

2.3. Cylindrical solutions

For cylindrical solutions, the situation is not so
simple since one has to cope with a two-dimensional
problem. Wave equation (2) has the cylindrical solu-
tion {7)

| R dz
%L’x(rv{)aé‘gj; F(R—1) R

Ri=x"437+2% P =x4y (1D

where Fis a function such that its derivative tends to
zero sufficiently fast at infinity.

The derivative of ¥ {r, 1)+ (r, — ) is zero at
t = (), 0 one may use equation (3). Then the general
cylindrical solution of the diffusion equation takes the
form

1 . N ot d:
wg(m):zwj {dse"“'"“"[) F(R—$) = (13)

e -
provided that the second integral in equation (13) is
smooth and bounded.

For instance for the harmonic solutions F(R—3)
= &~ relation (13) leads to expression (5b} with
n=10 and 1, = H) where H} is the usual Hankel
function. This last result comes from the relation [7]
~~~~~~ J ek 0 )§= Hi(arye ™. (14)

Q
It does not seem that solutions (13) were previously
known.

3. FOCUS AND SPLASH MODE SOLUTIONS

3.1. Foeus mode solutions
Relation (3} is now used to obtain two new classes
of solutions. One starts with the remark that the focus
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wave mode solutions of the hyperbolic partial differ-
ential equations have been introduced by Brittingham
{8]. They correspond to waves propagaling along 0z
with a transverse Gaussian structure and a longi-
tudinal Lorentzian structure. For the wave equation,
they take the form [9]

!}} i‘n{izs

i.{:'
Redog B0 - ikEamadd

)= Gy e

1

{15}

LA

with & = z2—1, & = z-+¢. Here it is assumed that the
parameters a, &, n are arbitrary but to obtain bounded
continuous solutions of equation (2), one must take
akrealwithak > Qandn=20,1,2...

Now ¥, (&, &) obtained by interchanging ¢ and &
is also a solution so that ¥, (£, &Y+, (&, &) has its
time derivative null at 7= 0 in agreement with the
condition required o use equation (3). Taking this
result into account together with egquation (15}, one
obtains from cquation (3)

;'" " ‘ e ds
Yo, {1 kY = - om g WO e
Jat) e —iz+18)

S kr®
T exp (W 4 ths = a—iz +Vis) (16)

with r = (r, ¢, 2),

Relation (16) defines the focus mode solutions of
the diffusion equation provided the integral exists,
But unlike focus modes (15) the structure of these
solutions is not easy to visualize. One may write equa-
tion {16} in the form

Yo A, 13 k) = e~ %R P (r £ k) (an
where @, is the structure function
I‘" e~ ing {0 dS
O, (r,1;k)= - T
Vrt) Joo (a—iz+1s)
Xcvu(sﬂ\v‘:-‘«ik\,n'e»/\'r-'(u iz b is) (17

®, is single valued for integer » and bounded in
the transverse direction for # > 0 and Ak Rea >0
{assuming & real).

Using the saddle point method of integration [6]
leads to the following approximation of @,:

e
e + s
- Erie- o 2En

&df N k I e s v e 1R
. 7:4) {a—iz+2kny (%
which is also a Gaussian transversally and Lorentzian

longitudinally.

3.2. Splash mode solutions

Returning to equation (2), in most of the physical
processes the wave energy density is proportional to
{12 Then it is easy to prove that the total encrgy

I dJ mj' del .
“r, iy it

g

in the focus wave modes (15) is infimte {9, 10]. It is
not a drawback per se. After all the plane wave solu-
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tions also share this property. Nevertheless it is inter-
esting to find solutions with finite energy. Ziolkowski
{11] proved that the splash wave mode solutions
obtained as a weighted superposition of the focus
wave modes have this property for a correct choice of
the weight function.

Similarly assuming & real, one can define the splash
mode solutions &z,,, of equation (1) as a weighted
mean of solutions (16)

bru0 = | s 09

where f(k) is a convenient weight function. Using
relation (16) with @ = —ib one obtains

rreTind dse="%

J (@) o (bFHz—5)"!

0(s) =z+s+

'ﬁZ,n(r’ t) =

dk f(k)ye~*%s  (20)

with

2

b+z— (207
As a first example, f(k) = 1/k then equation (20)
becomes

g2
dse s°/4t

I e—md) J‘
J@n) Jow bFz—5""!
where H denotes the Heaviside function.

Let 5,55, be the roots of the equation 6(s) =
According to equation (20") one obtains

You(r,0) = H@®(@) 1

51,2 = 3(b£/(b+22)*+4r%) 22

with b real these roots are real and s, being the smaller
root one has

H(0(s)) = H(s—s,)— H(s—s,). 23

Substituting equation (23) into equation (21) gives

e ind dse=14

J@t) k, btz—s)mtt

Since b+z is inside the interval (s,,s,) one must be
careful in defining equation (24) as a Cauchy principal
value around s = b+z.

As a second example assume f(k) = 1 so that equa-
tion (20) becomes

Joulr, 1) = (24)

—s¥ar

25)

—ing

Youlr) = N

J‘w ds 6(0(s))

where 6 is the Dirac distribution. Using the well-
known relation [5]

o (S - sn_)

SO6) = 16
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in which the summation has to be extended over all
the points s, where 6(s) changes sign, one obtains

—ing e—sf/4t

J () r’ )
(z+s5,) 1+ (Z+s2)z

lpZ,n(r’ t) =

e—s§/4z

+1 r’
(z+s,) (1+m)

with s, 5, still given by equation (22).
Forb=0o0nehass, = —s, = \/(22+r2) and equa-
tion (26) becomes

+ (26)

rreine
2/ (at(z* +r?))

=P +2hr4

l/IAZ,n(r’ t) =

1 1
— 27
X<(2+\/(Zz+7'2))n (z—\/(zz+r2))"> ( )

which gives forn =1

—i¢
Poe 1) = e

J( )

a solution which is not bounded for r — 0.

@7)

3.3. Generalization

It is now proved that the two classes of the previous
solutions can be generalized. Note that u the set of the
variables (r, ¢, £) and consider the transformation

Vi W, 8) = J_ g =W (ws)ds  (28)

where g is a differentiable function null at infinity and
such that integral (28) exists.

It is easy to show that if y/, is a solution of equation
(2), ¥, is also a solution of equation (2). Then sub-
stituting equation (15) into equation (28) supplies
the generalized focus wave mode solutions ¥, ,, and
substituting y, ., into equation (3) gives the gener-
alized focus mode solutions ¥, ., of equation (1).

A particular attractive case happens when g is the
following Gaussian function shifted in direct and
Fourier transform spaces :

—(-9?
4g°

+ iw(s— é))
(29)

1
g(s,&sw) = 2na®)'" €Xp <

where ¢, w, are positive scalars. Then equation (28)
defines the Gabor transformation [12] of ¥,.

Using ¥, ., instead of ¥/, ,, in equation (19) leads to
the generalized splash mode solutions 11;2@;,,. It can be
remarked that with equation (29), one should obtain
another class of splash mode solutions by weighting
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with respect to the scalar w. This will not be elaborated
on further.

4. CONCLUSIONS

It is curious that relation (3) went unnoticed (ref.
[5] is an exception) since many authors used the
Laplace transform to solve both equations (1) and
(2) and since the relation between % ~'(f(p)) and
Z-Yf (\/p)) is well known. Perhaps the reason is
that relation (3) seems to be not very useful for
boundary value problems. For initial value problems
one obtains from relation (3), in addition to the usual
solutions, new classes of solutions such as the focus
and splash modes the properties of which as well as
the physical meaning have still to be investigated.
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REMARQUES SUR LES SOLUTIONS DE L’EQUATION DE DIFFUSION

Résumé—Entre les solutions de ’équation de diffusion et celles de I'équation d’onde, il existe une relation
qui permet d’obtenir de nouvelles solutions de I’équation de diffusion. On discute les solutions de type
foyer et de type splash en connection avec des solutions récentes de I’équation d’onde.

ANMERKUNG ZUR LOSUNG DER DIFFUSIONSGLEICHUNG

Zusammenfassung—Zwischen der Losung der Diffusionsgleichung und der Losung der Wellengleichung

besteht ein Zusammenhang, welcher zu neuen Losungsétzen der Diffusionsgleichung fiihrt. Es werden die

“Focus-Methode und die “Splash-Methode™ diskutiert, welche mit den vor kurzem gefunden Lésungs-
methoden der Wellengleichung zusammenhéngen.

O PEIIEHUAX YPABHEHW S TUPPY3INHU

AnRotanus—MexXnay pelleHHsAMH ypaBHeHHs OH(QPy3nH H BOJHOBOrO YpaBHEHHs CYLIECTBYET 3aBHCH-

MOCTB, KOTOpas JaeT BO3MOXHOCTb MOJIyHHTh HOBHIE peluenus ypapHenus auddysuu. Obcyxmarorcs

penenns 11 GOKyca M BCHBIKH, KOTOPBIE CBA3aHBI C HEABHO OTKPHITHIMH DELICHHAMH BOJHOBOTO
ypaBHEHHS.



