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Abstract-There exists between the solutions of the diffusion equation and the solutions of the wave 
equation a relationship which enables new solutions of the diffusion equation to be obtained. Focus and 
splash mode solutions are discussed which are connected to the recently discovered mode solutions of the 

wave equation. 

1. INTRODUCTION 

THE D~SION equation has been the subject of many 
works in different areas : heat conduction (1,2], neu- 
tron scattering 91, wave mechanics [4] . . . But a 
relationship between the solutions of the diffusion 
equation and the solutions of the wave equation 
passed largely unnoticed. This relationship is dis- 
cussed here and it is proved that it leads to new solu- 
tions in unbounded media. 

Using the heat equation as representative of the 
diffusion processes and to simplify the matter assume 
the diffusivity as unity so that the heat equation takes 
the form 

AJfz -a,92 = 0 (1) 

where A is the Laplacian operator and a, the derivative 
with respect to time. 

With the velocity of light unity, the wave equation 
is 

A$, -a:$, = 0. (2) 

Then taking the Laplace transform of equations 
(1) and (2) with respect to time and using the well- 
known relation [5] between the inverse transforms 
S?‘tfCp)) and dp-‘(f(,/p)) where p is the sym- 
bolic variable one obtains the following relation 
between J/ , and 11, 2 : 

$&,y,z,Q =& ~me-‘z’4~S,(x,y,z,s)ds (3) 
s 

provided that a,$, = 0 at t = 0 (in ref. [S], it is 
required wrongly that $, be also zero at t = 0). 

For instance with 

$,(z, t) = cosate-‘“* 

$,(r,$,t) =e-‘“+cosortz,(ar) 

one obtains the elementary solutions 

Ji2(-7, t) = eCSnz e-‘+ 

$ 2y, >f ( # ) = e-in@e-azi z,(ar) 

(4a) 

(4b) 

@a) 

W 

where 01 is an arbitrary scalar, Y, 4 the transverse coor- 
dinates, and Z, denotes one of the usual Bessel func- 
tions of order n. 

From now on relation (3) is used first to discuss the 
general plane, spherical, and cylindrical solutions of 
the heat equation in unbounded media and second to 
introduce new kinds of solutions. 

2. GENERAL SYMMETRIC SOLUTIONS 

2.1. Plane solutions 
The general plane wave solution of the one-dimen- 

sional wave equation is 

$l(z,l) = f(F(z-t)+G(z+t)) (6) 

where F, G are arbitrary smooth functions while the 
factor 112 has been introduced for convenience. The 
condition c?,@, = 0 at t = 0 requires F = G. Then 
substituting 

$,(z,s) = f(@-s)+F(z+s)) (6’) 

into equation (3) gives the general plane solution of 
the one-dimensional diffusion equation in the form of 
a Wiener integral 

41/&z, t) = L 
s 
m 

2J(nt) -CC 
ecazi4' F(z--s) ds. (7) 

For instance, if F(z -s) is the nth derivative Sn(z -s) 
of the Dirac dist~bution, one obtains the instan- 
taneous multiplet source solutions [I] of equation (1) 

$2,“(Z, 0 = (8) 

while F(z-s) = e-i(Z-S) leads to equation (5a). 
Relation (7) is usually obtained in a different way 

by using the Fourier transform and the convolution 
product [6]. In this case F(z) is the initial distribution 
of temperature along Oz. 

2.2. Sp~eric~I solutions 
First note that in spherical geometry the diffusion 

equation takes the form 
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comparing equation (9) with the one-dimensional 
diffusion equation af$,--a,tj~~ = 0 shows that one 
has just to substitute R and li$2 to z and ll/Z in equa- 
tion (7) to obtain the spherical solutions of equation 
( Ii. This gives 

$:(R,t) = -‘- 
.i 
J 

2J(nr) I 
e-“‘l’ F(R_‘s) ;_ (10) 

Far F((R-s) = S”(R-s), one obtains the instan- 
taneous multiplet source solutions 

which reduce for n = 1 to the well-known rcsu.lt 

corresponding to a point source. 

2.3. Cylindricul solutions 
For cylindrical solutions, the situation is not so 

simple since one has to cope with a two-dimensional 
problem. Wave equation (2) has the cylindrical solu- 
tion [7] 

where Fis a function such that its derivative tends to 
zero sufficiently fast at infinity. 

The derivative of li/,(~,b)i$,(r, --I) is zero at 
t = 0, so one may use equation (3). Then the general 
cylindrical solution of the diffusion equation takes the 
foml 

provided that the second integral in equation [I?) is 
smooth and bounded. 

For instance for the harmonic solutions F(R-s) 
= eiXtR-.‘f relation (13) leads to expression (5b) with 
n = 0 and T<, E HA where HA is the usual Hankef 
function. This last result comes from the relation [7] 

It does not seem that solutions (13) were previously 
known. 

3. FOCUS ANO SPtaSH MODE SOlUflORaS 

Relation (3) is now used to obtain two new ciasses 

of solutions. One starts with the remark that the focus 

wave mode solutions of the hyperbolic partial differ- 
ential equations have been introduced by Brittinghanr 
[S]. They correspond to waves propagating along O-_ 
with a transverse Gaussian structure and a longi- 
tudinal Lorentzian structure. For the wave equation. 
they take the form [9] 

with E = -‘-f, e = Z+I. Here it is assumed that the 
parameters a, k, FE are arbitrary but to obtain bounded 
continuous solutions of equation (3), one musl take 
a,krealwithak>Oandn=0,1.2... 

Now $ ,,,,(f, 0 obtained by interchanging < and 5 

is also a solution so that $ ,,,, (:, t) +fj ,_,,(f, <) has its 
time derivative nuil at t = 0 in agreement with the 
condition required to use equation (3). Taking this 
result into account together with equation (151, one 
obtains from equation (3) 

with r = (r, 4, c), 
Relation (16) defines the focus mode solutions 01 

the diffusion equation provided the integral exists. 
But unlike focus modes {IS) the structure of these 
solutions is not easy to visualize. One may write equa- 
tion f 16) in the form 

Gl.,(r, f; k) = e--i~‘r--i’i@,,{r. t;k) 

where @n is the structure function 

117) 

$’ e i,!$ P 

Qn(r, t;k) = s ds “_..... _ 
v’(“t) .” T (a-i-+i,y)“tl 

x e (5 ?,,I tk, “‘c ir’to II, I\! 

Using the saddle point method of jnte~at~on [6j 

(17’) 

@, is single valued for integer tl and bounded in 
the transverse direction for n 2 0 and k&a .> 0 

leads to the following approximation of @*; : 

(assuming k real). 

which is also a Gaussian transversally and Lorentrian 
longitudinally. 

3.2. Splash mode solz~tbr~s 
Returning to equation (21, in most of the physical 

processes the wave energy density is proportional to 
i$, 1 2. Then it is easy to prove that the total energy 

5‘. dT$ ?“dr~;d&lr...i’ 

in the focus wave modes (15) is infinite 19_ I#]. It is 
not a drawback pep se. After all the plane wave solu- 
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tions also share this property. Nevertheless it is inter- 
esting to find solutions with finite energy. Ziolkowski 
[ll] proved that the splash wave mode solutions 
obtained as a weighted superposition of the focus 
wave modes have this property for a correct choice of 
the weight function. 

Similarly assuming k real, one can define the splash 
mode solutions $2,n of equation (1) as a weighted 
mean of solutions (16) 

&l(r, t) = 
s 

m dkf(W,,(r,t;k) (19) 
--m 

where f(k) is a convenient weight function. Using 
relation (16) with a = - ib one obtains 

X s m dkf(k) e-iks’s (20) 
-u’ 

with 

r2 
e(s) = zfs + ~ 

b+z-s’ (20’) 

in which the summation has to be extended over all 
the points s,, where e(s) changes sign, one obtains 

with s,, s2 still given by equation (22). 
For b = 0 one has s2 = -s, = ,/(z2+r2) and equa- 

tion (26) becomes 

^ f e-iw+ 

$2.Jr, t) = 2J(nt(z2 +r2)) e 

++z*y4r 

( 

1 1 
X 

(z+J(z2+r2))’ - (z-J(z2+r2))n > (27) 

which gives for n = 1 

As a first example, f(k) = l/k then equation (20) 
becomes 

(27’) 

4J2Jr, t) = EJ: (b~~~~+, W(s)) 
a solution which is not bounded for r + 0. 

(21) 
7-u ‘x’ 

3.3. Generalization 
where H denotes the Heaviside function. It is now proved that the two classes of the previous 

Let s,,s2, be the roots of the equation 6(s) = 0. solutions can be generalized. Note that u the set of the 
According to equation (20’) one obtains variables (r, 4, f) and consider the transformation 

s,,~ = i(bf,/((b+2z)2+4r2)) (22) 

with b real these roots are real and s1 being the smaller 
$l,g(u,5) = s” s(5-$$,I(U,s)ds (28) 

--m 
root one has 

where g is a differentiable function null at infinity and 
H(B(s)) = H(s-s,)-H(s-s,). (23) such that integral (28) exists. 

Substituting equation (23) into equation (21) gives 
It is easy to show that if $, is a solution of equation 

(2), $,,, is also a solution of equation (2). Then sub- 

ij2,Jr,t) =‘;,i;oJ;‘(b~~~~+,. 
stituting equation (15) into equation (28) supplies 

nt s, 
(24) the generalized focus wave mode solutions $ ,,g;n and 

substituting $1,9;n into equation (3) gives the gener- 

Since b +z is inside the interval (s,, s2) one must be alized focus mode solutions $2,g;n of equation (1). 

careful in defining equation (24) as a Cauchy principal A particular attractive case happens when g is the 

value around s = b + z. following Gaussian function shifted in direct and 

As a second example assume f(k) = 1 so that equa- Fourier transform spaces : 
tion (20) becomes 

1 

G2+(r,t) = zS_” ds&Q)) (b+e~~~~~+, 
ids, 5 ; 4 = c2na2j 1,4 exp 

( 
-(‘-‘)’ + iw(s-5) 402 

> 
nt co (29) 

(25) where Q, w, are positive scalars. Then equation (28) 
where 6 is the Dirac distribution. Using the well- defines the Gabor transformation [ 121 of II/ ,. 
known relation [5] Using $2,s;n instead of ti2,” in equation (19) leads to 

Q-s,) 
the generalized splash mode solutions $2,g;n. It can be 

W(s)) = c ,e,(s,), 
remarked that with equation (29), one should obtain 
another class of splash mode solutions by weighting 
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with respect to the scalar W. This will not be elaborated 
on further. 

4. CONCLUSIONS 

It is curious that relation (3) went unnoticed (ref. 
[5] is an exception) since many authors used the 
Laplace transform to solve both equations (1) and 
(2) and since the relation between 9 -‘(,f(p)) and 
9 ‘(f(Jp)) is well known. Perhaps the reason is 
that relation (3) seems to be not very useful for 
boundary value problems. For initial value problems 
one obtains from relation (3), in addition to the usual 
solutions, new classes of solutions such as the focus 

and splash modes the properties of which as well as 

the physical meaning have still to be investigated. 

Acknowledgement-The author would like to thank a referee 
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REMARQUES SUR LES SOLUTIONS DE L’EQUATION DE DIFFUSION 

R&sum&Entre les solutions de l’equation de diffusion et celles de l’tquation d’onde, il existe une relation 
qui permet d’obtenir de nouvelles solutions de l’tquation de diffusion. On discute les solutions de type 

foyer et de type splash en connection avec des solutions rtcentes de l’equation d’onde. 

ANMERKUNG ZUR L&SUNG DER DIFFUSIONSGLEICHUNG 

Zusanunenfassung-Zwischen der Losung der Diffusionsgleichung und der Losung der Wellengleichung 
besteht ein Zusammenhang, welcher zu neuen Losungsatzen der Diffusionsgleichung fiihrt. Es werden die 
“Focus-Methode” und die “Splash-Methode” diskutiert, welche mit den vor kurzem gefunden Losungs- 

methoden der Wellengleichung zusammenh2ngen. 

0 PEIIIEHWIIX YPABHEHHR ,I&i@PY3HH 

AImOTSIUlIW-MeXjJy pemeH&irMIl ypaBkieHH5I Di@+y3IiU Ii BOJlHOBOrO ypaBHeHHK CyIWCTByeT 3aBHCll- 

MOCTb, KOTOpaK AXT BO3MOPHOCTb lTOJIy'iHTb HOBble p‘?meHRK ypaBHeHA5l W'$'+y3HH. 06CJ’XAaloTCX 
pelueH&U, AJI,l +OKyCa H BCr‘bImKH, KOTOpbE CBI13aHbI C HeAaBHO OTKpbITbIMH ,?‘XIeHHSMH BOJlHOBOrO 

ypaBnemin. 


